
which leads to q = 0 at the bounding planes and 

q = (Eo  - Eo ) (3k 

inside the layer. 

This contradictory result is due to the incorrectly posed boundary conditions, as the authors allow radiative non- 
equilibrium at the bounding planes of an equilibrium layer. This is inconsistent with (2) and leads to the above contra- 
diction. 

The contradiction can be eliminated by deriving the equation for q from the assumption of radiative equilibrium 
of a boundary layer of thickness I/k [6]. The formulation of the radiative equilibrium of the boundary layer requires 
the application of Buguer's law. Thus, Adrianov and Polyak's remark that the boundary conditions derived by the auth- 
or contradict Buguer's law is incorrect. 

The incorrectness of the boundary condition in [5] is also indicated by the fact that the solution of the radiative 
heat transfer problem in cylindrical and spherical gas layers does not, under these conditions, lead in the limit to 
Christiansen's formula. 

Further, Adrianov and Polyak define the diffusion coefficient of radiative energy transfer by the expression D = 
= e/3k,  which is incorrect. Simple calculation shows that for a plane layer of a gray gas D = c/4k. The derivation of 
this formula can be found in several papers [6, 7]. 

Now as regards the comparison between my solution and the "exact" solution of Hottel [2]. 

A study of Hottel 's graph [2] shows that for values k 6 - 6 my solution practically coincides with Hottel's "exact" 
solution. Thus Adrianov and Polyak's remark that for large k6 my solution leads to results 25% lower than Hottel 's "ex- 
act" values is incorrect. 

In conclusion, I would like to remark that there is no sufficient foundation for regarding Hottel 's solution as ab- 
solutely exact, as the mathemat ica l  formulation of the problem considered by Hottel is by no means clear. It can be 
said only that correct application of the differential and integral approaches to radiative heat transfer should lead to 
identical results. 
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H E A T  T R A N S F E R  ON A N O N I S O T H E R M A L  F L A T  P L A T E  W I T H  A L A M I N A R  
B O U N D A R Y  LAYER 

D. A, Labuntsov 

Inzhenerno-Fizicheskii Zhurnal, Vol. 8, No. 3, pp. 403-405, 1965 

Reference [1] contains the very interesting results of an experimental investigation of heat transfer in longitudinal 
flow over a nonisothermal fiat plate, In particular, data are given for the case of an initial adiabatic section followed 
by a region with approximately constant heat flux. Under these conditions (which had not been previously examined 
experimentally) the unheated length was observed to have an appreciable effect on heat transfer in the presence of a 
laminar boundary layer. 

This effect is described in [1] by the empirical  relation: 
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Ko, x ,  = 0 . 4 3  [xl/xlV', 
.^-1/ ,  n_-,/~ [prjPrM-V,.  Ko, x, = Nuy, x, xxe?, x, r~f  

(1) 

The possibility of correlating the experimental  data with theory is of considerable interest. In the report of the 
Kaunas Symposium on Convective Heat Transfer in Single-Phase Media (1962), the present author showed that  the lo-  
cal  heat flux density on a nonisothermal plate can be represented by 

q~, (x) = Ko,. ~. T= (x) [w=o/v x] v" Pr '/~. (2 )  

Here the coefficient  K0, x depends on the temperature conditions (i. e . ,  the form of function Tw(x): 

i z 1[ 1 S T~Iz d(lnT~) zT= 
Ko,. = 0.33 1 + o z " ( a )  

2zT~ d (ln z) j" T=dz 
o 

(here z -= xa/a). 

This solution was obtained by means of an i terat ive sequence of integration of the differential equations of the 
laminar  bolmdary layer and is, generally speaking, approximate.  The specific advantage of this method over other 
known methods of calculat ing isothermal heat transfer [2-7] is the possibility of calculating K0, x in explici t  form for 
a wide ranfe of functions describing the surface temperature.  It has been shown that calculations based on Eq. (3) give 
satisfactory results for all forms of temperature  nontmiformity examined experimental ly and analytically.  

A theoretical  es t imate of K0, x for the exper imemal  conditions of [1] may  be obtained from (3) if we assume 

when x < x0 T .  (x) ~- 0, 

when x > Xo T .  (x) --- x n. 
(4) 

Integrating in (3) and then going over in (2) from the coordinate x to xl, as in ['11 we have 

Ko.x, = 0,33 ( 1 + 2n) [&/x] '/' j 1 2n/3 
(1 ~-- 4n/3)'" [ 1 4- 2n 

(go,x ,  [x l /x l  1/' - (IC, o.,).  

(5) 

It can be shown that to make an approximate allowance for the conditions qw = const on the section x I for any 

values of xl/x it is sufficient to substitute a constant value of the exponent n = 1/2 in (5) (or the value n = 0. 4 from 

the experiments of [I] for x I = x). Actually, when xl/x is close to unity, such a value of n satisfies the condition qw = 

= const quite well (this is obvious). For small values of Xl/X other values of n must generally be taken to satisfy this 

condition. However, for small xl/x , (5) is invariant with respect to n if 

when i x ,  ( (  x N0,x, = 0.33 (4/3) 1/3 [xl/x] v ' .  

The figure gives the results of calculations based on (5) for n = 0. 4 in the coordinates K0, x 1 = Je(Xl/X). The ex-  
per imental  points of [1] are also given, together with the line corresponding to the empir ica l  formula (1). 
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4I ..... L 

2 ~ - -  / 
~_~-~"8 ~-*'l'-~'~-- -- -- - 2 

td' - -  - -  - j 

2 ~ 6 8 / 0  g 2 a 6 8 z a ' i  2 # 6xf /x  

K0, xl  = f (xffx): 1, 2) ca lcu la ted  from (5) for n = 0 .4  and 
n = 0, 3) from (1). Experimental  points from [1]. 

The data presented show that  t h e  theore t ica l  ca lcula t ion is in good agreement  with exper iment  over the entire 
range of x l /x  examined.  

A table  is given in [1] in which the relat ive variat ion of  K0, x, as a function of  x , /x  is given both for empi r i ca l  
relation (1) and also for Eckert 's theore t ica l  relat ion [6]: 

Ko, x, = 0.33 [x f f x ]  V2 { 1 - -  [ 1 - -  x f f x ]  =/" } - v . .  (7) 

The variat ion of these coefficients was found to differ. It is c lear  from the above analysis that the disparity is 
due to the fact that the comparat ive  variations re la te  to different kinds of temperature  nonuniformity. It is, therefore, 
incorrect  to state that Eckert 's relation is inexact  or requires correction, His equation,  as is known [6, 7], was obtained 
for a stepwise temperature  nonuniformity, when T w = const on the heat  transfer section. This relat ion (7) may  be ob-  
tained in part icular ,  from solution (5) by putting n = 0 (see figure). 

It may  be concluded from the above remarks that the method recommended in [1] for ca lcu la t ing  heat  transfer 
with a stepwise temperature  nonuniformity is only valid for the case examined when qw ~' const on the heat  transfer 
section. When T w = const on the heat  transfer section (Eckert nonuniformity),  calculat ions based on (1) wil l  give a re -  
duced heat  transfer rate. Evidently, for both types of step nonuniformity (and also for in te rmedia te  conditions) c a l c u l a -  
tion of  K0, x~ according to (5), with suitable values of the exponent n, wil l  give satisfactory results. 

NOTATION 

x 1 and x - heated and total  length of  plate;  K0, xl  - re la t ive  loca l  heat  transfer rate  ( taking into account cor rec-  
tion for variat ion of  thermophysical  properties); Tw(X ) - local  temperature  head; x 0 - length of  in i t i a l  unheated section. 
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